Mining Temporal Relational Patterns over Databases with Hybrid Time Domains
نویسندگان
چکیده
Most methods for temporal pattern mining assume that time is represented by points in a straight line starting at some initial instant. Discovering sequential patterns in customer’s transactions is a well-known application where such data mining methods have been used successfully. In this paper, we consider a new kind of temporal pattern where both interval and punctual time representation are considered. These patterns, which we call temporal pointinterval patterns aim at capturing how events taking place during different time periods or at different time instants relate to each other. The datasets where these kind of patterns may appear are temporal relational databases whose relations contain point or interval timestamps. We use a simple extension of Allen’s Temporal Interval Logic as a formalism for specifying these temporal patterns. We also present the algorithm MILPRIT∗ for mining temporal point-interval patterns, which uses variants of the classical level-wise search algorithms. Besides, MILPRIT∗ allows a broad spectrum of constraints to be incorporated into the mining process. These constraints aim at restricting the search space (and so, improving the algorithm perfomance) as well as returning patterns closer to user interest. Finally, we present an extensive set of experiments of MILPRIT∗ executed over synthetic and real data and analyse its results.
منابع مشابه
A Constraint-Based Algorithm for Mining Temporal Relational Patterns
In this article, we consider a new kind of temporal pattern where both interval and punctual time representation are considered. These patterns, which we call temporal point-interval patterns, aim at capturing how events taking place during different time periods or at different time instants relate to each other. The datasets where these kinds of patterns may appear are temporal relational dat...
متن کاملMILPRIT*: A Constraint-Based Algorithm for Mining Temporal Relational Patterns
In this article, we consider a new kind of temporal pattern where both interval and punctual time representation are considered. These patterns, which we call temporal point-interval patterns, aim at capturing how events taking place during different time periods or at different time instants relate to each other. The datasets where these kinds of patterns may appear are temporal relational dat...
متن کاملAn Ilp - Based Concept Discovery System for Multi - Relational Data Mining
AN ILP-BASED CONCEPT DISCOVERY SYSTEM FOR MULTI-RELATIONAL DATA MINING Kavurucu, Yusuf Ph.D., Department of Computer Engineering Supervisor : Asst. Prof. Dr. Pınar Şenkul July 2009, 118 pages Multi Relational Data Mining has become popular due to the limitations of propositional problem definition in structured domains and the tendency of storing data in relational databases. However, as patter...
متن کاملMining Temporal Patterns in Time-series Medical Databases: A Hybrid Approach of Multiscale Matching and Rough Clustering
This paper presents a method for analyzing time-series laboratory examination databases. The key concept of this method is classification of temporal patterns using multiscale structure matching and a rough set-based clustering method. Multiscale matching enables us to capture similarity between two sequences of examinations from both short-term and long-term points of view. The rough-set based...
متن کاملA Matter of Time
Multi Relational Data Mining searches for patterns that involve multiple tables from a relational database. In order to avoid the generation of a huge relation involving all of the attributes and the loss of information, including essential semantic information represented by the links in the database design, it aims to discover knowledge directly from relational data. Time is an intrinsic data...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007